Клапан регулирующий комбинированный седельный проходной с автоматическим ограничением расхода AVQM (PN 16)

Описание и область применения

AVQM является комбинацией седельного регулирующего клапана (исполнительного механизма электрической системы регулирования) и автоматического регулятора — ограничителя расхода прямого действия с диафрагмой и рабочей пружиной.

AVQM используется совместно с электроприводами типа AMV(E) 10*, AMV(E) 13*, AMV(E) 13SU*, ARV(E) 152, AMV(E) 23, AMV(E) 23SU, ARV(E) 153 и AMV(E) 33, которые управляются электронными регуляторами серии ECL.

Основные характеристики

- Условный проход: DN = 15-32 мм.
- Пропускная способность: $K_{vs} = 0,4-10 \text{ м}^3/\text{ч}$.
- Условное давление: PN = 16 бар.
- Величина фиксированного перепада давлений на регуляторе — ограничителе расхода: $\Delta P_{p6} = 0.2$ бар.
- Температура регулируемой среды (воды или 30 % водного раствора гликоля): T = 2-150 °C.
- Присоединение к трубопроводу: резьбовое (наружная резьба) — через резьбовые, приварные или фланцевые фитинги.

Номенклатура и коды для оформления заказа

Пример заказа

Комбинированный регулирующий клапан DN = 15 мм, $K_{vs} = 1,6 \text{ m}^3/4, PN = 16 \text{ 6ap},$ $T_{\text{макс.}} = 150 \, ^{\circ}\text{C}$, с приварными присоединительными фитин-

- регулятор AVQM DN = 15 мм, кодовый номер **003H7635**
- приварные фитинги, кодовый номер **003H6908** — 1 компл.

Клапан AVQM

Эскиз	DN	K _{vs} , м ³ /ч	Присоединение	Кодовый номер	
п		0,4			003H6733
	15	1,0			003H6734
		1,6	Цилиндрическая наружная трубная резьба по ISO 228/1, дюймы	G ¾ A	003H6735
		2,5			003H6736
		4,0			003H6737
	20	6,3		G1A	003H6738
	25	8,0	G 1¼ A G 1¾ A		003H6739
V	32	10,0			003H6740

Примечание. Другие версии регуляторов поставляются по запросу.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Белгород (4722/40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-0-Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 ереповец (8202)49-02-64 Ярославль (4852)69-52-93

AMV150, AMV(E) 10, AMV(E) 13 и AMV(E) 13SU могут применяться только с клапанами AVOM DN 15.

Номенклатура и коды для оформления заказа (продолжение)

Дополнительные принадлежности

Эскиз		Наименование		Присоединение	Кодовый номер		
			15		003H6908		
		Приварные присоеди- нительные фитинги	20		003H6909		
			25	_	003H6910		
			32			003H6911	
		Резьбовые присое- динительные фитинги (с наружной резьбой)	15	Коническая наружная трубная резьба по EN 10266-1, дюймы	R 1/2"	003H6902	
l ⊓ B∟			20		R ¾"	003H6903	
4			25		R 1"	003H6904	
		(6 45) / 6 6 6 6 6	32	долив	R 11/4"	003H6905	
П		Фланцевые присоедини-	15			003H6915	
			20	Фланцы, PN 25, по EN 1092	-2	003H6916	
Тот тельные фі		тельные фитинги	25			003H6917	

Запасные детали

Эскиз	Наименование	DN	K _{vs} , м³/ч	Кодовый номер
			0,4	003H6861
		15	1,0	003H6862
l A	Вставка седельного регулирующего клапана		1,6	003H6863
			2,5	003H6864
			4,0	003H6865
		20	6,3	003H6866
		25	8,0	003H6867
		32	10,0	003H6867
	Вставка клапана регулятора — ограничителя расхода	15	0,4	003H6886
			1,0	003H6887
- Alexander			1,6	003H6888
			2,5	003H6889
			4,0	003H6890
		20	6,3	003H6891
		25	8,0	003H6892
		32	10,0	003H6795
Эскиз	Наименование		ΔР _{кл.} , бар	Кодовый номер
	Регулирующий блок		0,2	003H6825

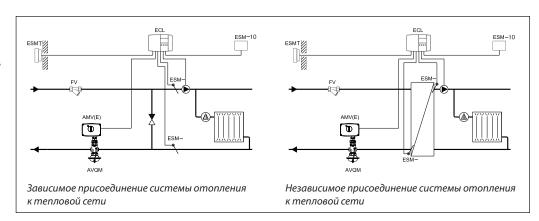
Технические характеристики

Клапан

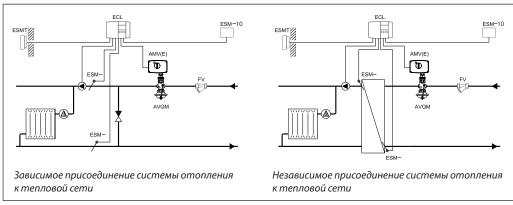
			4.5						
Условный проход DN, мм			15					25	32
Пропускная способность K _{vs} , м³/ч			1	1,6	2,5	4	6,3	8	10
Диапазон настройки расхода при	Q _{мин.}	0,015	0,02	0,03	0,07	0,07	0,16	0,2	0,16
фиксированном перепаде давления на регуляторе $\Delta P_{p6.} = 0,2$ бар, м ³ /ч	Q _{макс.}	0,18	0,4	0,86	1,4	2,2	3	3,5	5,5
Мин. перепад давления на клапане для Q_{MR}	Мин. перепад давления на клапане для Q _{макс.} , бар			0,5	0,6	0,6	0,5	0,5	0,6
Макс. ход штока регулирующего клапана, мм			5					7	
Авторитет регулирующего клапана		1 (100%) в диапазоне возможных расходов клапана							
Характеристика регулирования		Логарифмическая							
Коэффициент начала кавитации Z			≥0,6 ≥0					≥0	,55
Величина протечки, % от K _{vs}			≤0,02					≤0,05	
Условное давление PN, бар			16						
Мин. перепад давлений на клапане ΔΡ _{ΑVQM} , бар			См. примечание*						
Макс. перепад давлений на клапане ΔP _{AVQM} , бар			12						
Регулируемая среда			Вода или 30 % водный раствор гликоля						
рН регулируемой среды			7–10						
Температура регулируемой среды Т, °С			2–150						
	клапан	С наружной резьбой							
Присоединение	фитинги	Приварные, резьбовые (с наружной резьбой)							
				Φ	ланце	вые			_
***************************************								(C /V)	

^{*} Минимальный перепад давлений зависит от расхода и значения K_{vs} . Для расхода меньше максимального $\Delta P_{\text{мин.}} = (G/K_{vs})^2 + \Delta P_{p6}$.

Технические характеристики (продолжение)

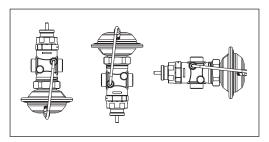

Материал				
Корпус клапана	Красная бронза CuSn5ZnPb (Rg5)			
Седло клапана	Нержавеющая сталь, мат. № 1.4571			
Золотник клапана	Heoбесцинковывающаяся латунь CuZn36Pb2As			
Уплотнение регулирующего блока	EPDM			
Уплотниение клапана	Металлическое			
Система разгрузки по давлению	Есть			

Регулирующий блок

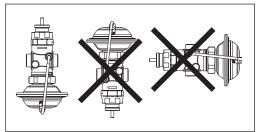

Тип	AVQM			
Площадь регулирующей диафрагмы, см ²	39			
Условное давление PN, бар	16			
Фиксированный перепад давлений на регулирующем клапане $\Delta P_{\kappa n, \prime}$ бар	0,2			
Материал				
Корпус регулирующей диафрагмы	Оцинкованная сталь, мат. DIN 1624 № 1.0338			
Диафрагма	EPDM			
Импульсная трубка	Медная трубка, Ø6×1 мм			

Примеры применения

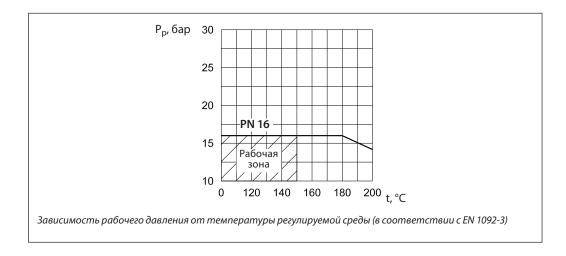
Установка клапана на обратном трубопроводе



Установка клапана на подающем трубопроводе



Монтажные положения


При температуре регулируемой среды до 100 °C клапан может быть установлен в любом положении.

При температуре выше 100 °C клапан следует устанавливать только на горизонтальном трубопроводе диафрагменным элементом вниз.

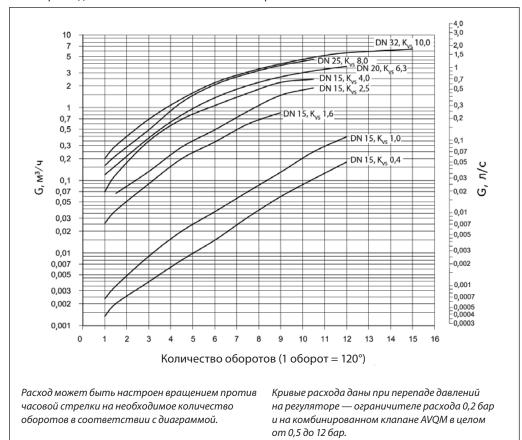

Условия применения

Диаграмма расхода

Диаграмма для настройки регулятора — ограничителя расхода

Зависимость между расходом и количеством оборотов для настройки регулятора — ограничителя расхода. Указанные значения являются приблизительными.

Примечение.

Для настройки расхода на максимальные значения необходимо использовать диаграммы, представленные в инструкции.

Примеры выбора клапана

Для зависимо-присоединенной к тепловой сети системы отопления

Пример 1

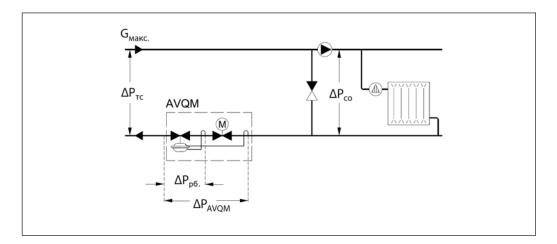
Требуется выбрать регулятор AVQM для зависимо-присоединенной к тепловой сети системы отопления при предельном расходе теплоносителя $G_{\text{макс.}} = 700 \text{ л/ч}$.

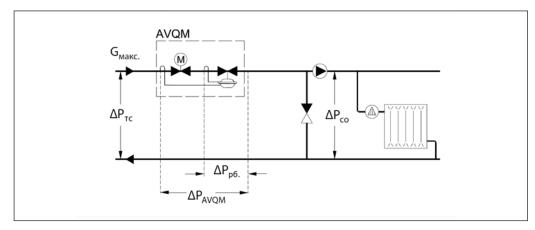
Исходные данные

$$\begin{split} G_{\text{MaKC.}} &= 0.7 \text{ M}^3/\text{ч}. \\ \Delta P_{\text{TC}} &= 0.8 \text{ бар (80 кПа)}. \\ \Delta P_{\text{p6.}} &= 0.2 \text{ бар (20 кПа)}. \\ \Delta P_{\text{co}} &= 0.1 \text{ бар (10 кПа)}. \end{split}$$

Примечание.

- 1. ΔP_{co} компенсируется напором насоса и не влияет на выбор клапана AVQM.
- 2. Потери давления в трубопроводах, арматуре и т. д. в данном примере не учитываются.


Решение


- 1. $\Delta P_{AVQM} = \Delta P_{TC} = 0.8$ бар (80 кПа).
- 2. По диаграмме (стр. 128) при $G_{\text{макс.}} = 0,7 \text{ м}^3/\text{ч}$ выбираем клапан с наименьшей $K_{\text{vs}} = 1,6 \text{ м}^3/\text{ч}$.
- 3. Минимально требуемый перепад давлений на клапане AVQM:

$$\begin{split} \Delta P_{\text{AVQM}}^{\text{MMH.}} &= \left(\frac{G_{\text{MAKC.}}}{K_{\text{VS}}}\right)^{\!2} + \Delta P_{\!p6.} \!=\! \left(\frac{0.9}{1.6}\right)^{\!2} \!\!+ 0.2 \!=\! \\ &= 0.39 \text{ Gap (39 kHa),} \end{split}$$

$$\Delta P_{AVOM} = 0.8 > \Delta P_{AVOM}^{MH.} = 0.39.$$

Результат проверки подтверждает правильность первоначального выбора клапана AVQM DN 15 с $K_{vs} = 1,6 \text{ м}^3/\text{ч}$ и диапазоном настройки расхода $0,03-0,9 \text{ м}^3/\text{ч}$.

Примеры выбора клапана *(продолжение)*

Лпа незденсимо-прис

Для независимо-присоединенной к тепловой сети системы отопления

Пример 2

Требуется выбрать регулятор AVQM для независимо-присоединенной к тепловой сети системы отопления при предельном расходе теплоносителя $G_{\text{макс.}} = 1200 \text{ л/ч}$.

Исходные данные

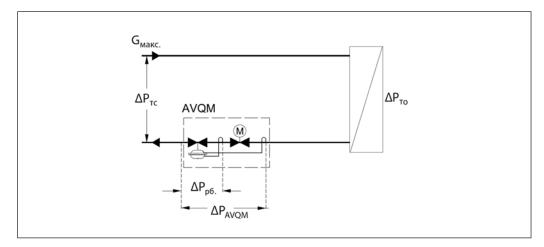
$$\begin{split} &G_{\text{Makc.}} = 1,2 \text{ m}^3/\text{u}. \\ &\Delta P_{\text{TC}} = 0,8 \text{ Gap (80 k\Pi a)}. \\ &\Delta P_{\text{p6.}} = 0,2 \text{ Gap (20 k\Pi a)}. \\ &\Delta P_{\text{TO}} = 0,1 \text{ Gap (10 k\Pi a)}. \end{split}$$

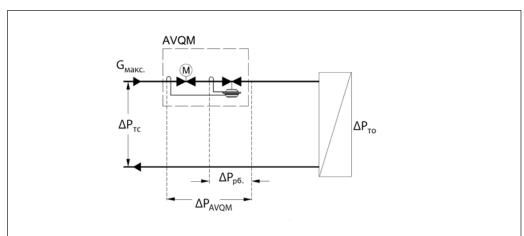
Примечание.

Потери давления в трубопроводах, арматуре и т. д. в данном примере не учитываются.

Решение

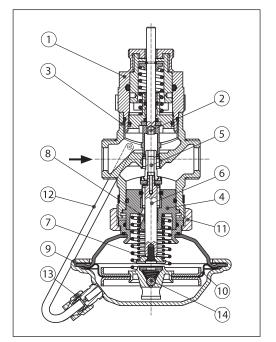
1. $\Delta P_{AVQM} = \Delta P_{TC} - \Delta P_{TO} = 0.8 - 0.1 = 0.7$ 6ap (70 κΠa).


2. По диаграмме (стр. 128) при $G_{\text{макс.}} = 1,2 \text{ м}^3/\text{ч}$ выбираем клапан с наименьшей $K_{\text{vs}} = 2,5 \text{ м}^3/\text{ч}$. 3. Минимально требуемый перепад давлений на клапане AVQM:


$$\Delta P_{\text{AVQM}}^{\text{MMH.}} = \left(\frac{G_{\text{MaKC.}}}{K_{\text{VS}}}\right)^2 + \Delta P_{\text{p6.}} = \left(\frac{1.5}{2.5}\right)^2 + 0.2 =$$

$$= 0.43 \text{ Gap (43 kHa)},$$

$$\Delta P_{AVOM} = 0.7 > \Delta P_{AVQM}^{MH.} = 0.43.$$


Результат проверки подтверждает правильность первоначального выбора клапана AVQM DN 15 с $K_{vs} = 2,5$ м³/ч и диапазоном настройки расхода 0,07-2,4 м³/ч.

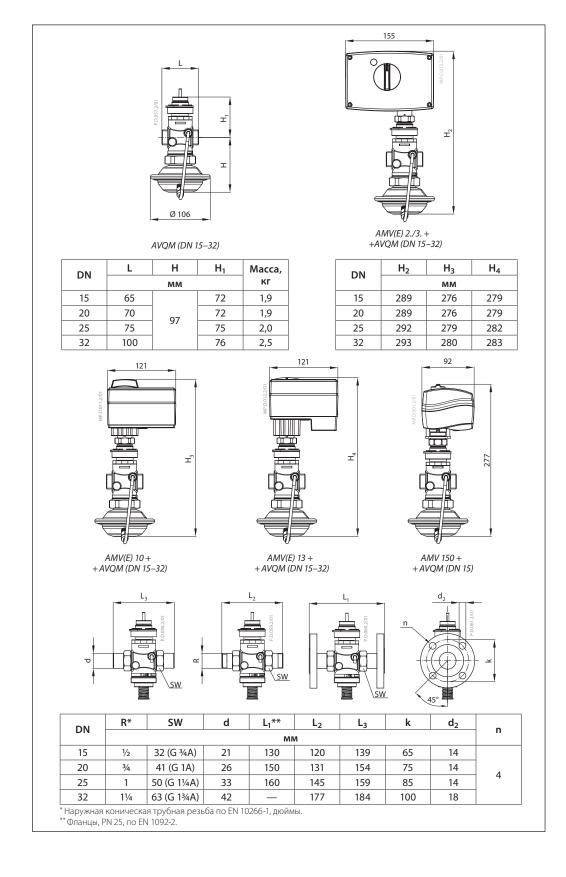
Устройство

- вставка регулирующего клапана;
- ограничитель хода штока регулирующего клапана;
- 3 корпус клапана;
- 4 вставка клапана регулятора ограничителя расхода;
- 5 разгруженный по давлению золотник клапана;
- 6 шток клапана:
- 7 пружина для ограничения расхода;
- 8 канал импульса давления;
- 9 регулирующий блок;
- 10 регулирующая диафрагма;
- 11 соединительная гайка;
- 12 импульсная трубка;
- 13 компрессионый фитинг для импульсной трубки;
- 14 предохранительный клапан.

Принцип действия

Величина расхода определяется перепадом давлений на регулирующем клапане. Перепад давлений передается на регулирующую диафрагму через внутреннюю импульсную трубку и канал в штоке. Перепад давлений поддерживается на постоянном уровне с помощью рабочей пружины регулятора.

Электрический привод, устанавливаемый на клапан, будет перемещать его шток от


полностью закрытого положения до открытого, зафиксированного в результате настройки предельного расхода.

Регулятор снабжен предохранительным клапаном, который защищает регулирующую диафрагму от слишком большого перепада давлений.

Настройка

Установка расхода

Настройка расхода производится путем установки ограничителя хода штока регулирующего клапана в требуемое положение. Настройка выполняется с использованием диаграмм (см. соответствующие инструкции) или по показаниям теплосчетчика.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (8142)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93